首页> 外文期刊>Pattern Recognition: The Journal of the Pattern Recognition Society >Enhancing decision combination of face and fingerprint by exploitation of individual classifier space: An approach to multi-modal biometry
【24h】

Enhancing decision combination of face and fingerprint by exploitation of individual classifier space: An approach to multi-modal biometry

机译:通过利用个体分类器空间来增强人脸和指纹的决策组合:多模式生物特征识别方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach to combine decisions from face and fingerprint classifiers for multi-modal biometry by exploiting the individual classifier space on the basis of availability of class-specific information present in the classifier space. We exploit the prior knowledge by training the face classifier using response vectors on a validation set, enhancing class separability (using parametric and nonparametric Linear Discriminant Analysis) in the classifier output space and thereby improving the performance of the face classifier. Fingerprint classifier often does not provide this information due to high sensitivity of available minutiae points, producing partial matches across subjects. The enhanced face and fingerprint classifiers are combined using a sum rule. We also propose a generalized algorithm for multiple classifier combination (MCC) based on our approach. Experimental results show superiority of the proposed method over other existing fusion techniques, such as sum, product, max, min rules, decision template and Dempster-Shafer theory. (c) 2007 Elsevier Ltd. All rights reserved.
机译:本文提出了一种新方法,可基于分类器空间中存在的特定类信息的可用性,通过利用单个分类器空间来组合面部识别器和指纹分类器的决策,以用于多模式生物特征识别。我们通过在验证集上使用响应向量训练人脸分类器来利用先验知识,增强分类器输出空间中的类可分离性(使用参数和非参数线性判别分析),从而提高人脸分类器的性能。指纹分类器通常不提供此信息,因为可用的细节点具有很高的敏感性,从而在对象之间产生了部分匹配。增强的面部和指纹分类器使用求和规则进行组合。我们还基于我们的方法提出了一种用于多分类器组合(MCC)的通用算法。实验结果表明,该方法优于其他现有的融合技术,例如求和,乘积,最大,最小规则,决策模板和Dempster-Shafer理论。 (c)2007 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:[email protected]

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号

OSZAR »