首页> 外文OA文献 >Combining Multiple Biometric Traits Using Asymmetric Aggregation Operators for Improved Person Recognition
【2h】

Combining Multiple Biometric Traits Using Asymmetric Aggregation Operators for Improved Person Recognition

机译:使用非对称聚合运算符组合多个生物识别性状,以改进人才识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biometrics is a scientific technology to recognize a person using their physical, behavior or chemical attributes. Biometrics is nowadays widely being used in several daily applications ranging from smart device user authentication to border crossing. A system that uses a single source of biometric information (e.g., single fingerprint) to recognize people is known as unimodal or unibiometrics system. Whereas, the system that consolidates data from multiple biometric sources of information (e.g., face and fingerprint) is called multimodal or multibiometrics system. Multibiometrics systems can alleviate the error rates and some inherent weaknesses of unibiometrics systems. Therefore, we present, in this study, a novel score level fusion-based scheme for multibiometric user recognition system. The proposed framework is hinged on Asymmetric Aggregation Operators (Asym-AOs). In particular, Asym-AOs are estimated via the generator functions of triangular norms (t-norms). The extensive set of experiments using seven publicly available benchmark databases, namely, National Institute of Standards and Technology (NIST)-Face, NIST-Multimodal, IIT Delhi Palmprint V1, IIT Delhi Ear, Hong Kong PolyU Contactless Hand Dorsal Images, Mobile Biometry (MOBIO) face, and Visible light mobile Ocular Biometric (VISOB) iPhone Day Light Ocular Mobile databases have been reported to show efficacy of the proposed scheme. The experimental results demonstrate that Asym-AOs based score fusion schemes not only are able to increase authentication rates compared to existing score level fusion methods (e.g., min, max, t-norms, symmetric-sum) but also is computationally fast.
机译:生物识别技术是一种科学技术,可以使用他们的物理,行为或化学属性来识别一个人。现在,生物识别技术广泛用于智能设备用户身份验证到边境交叉的几个日常应用中。使用单一的生物信息(例如,单指纹)来识别人们的系统被称为单向或联合仪器系统。虽然,整合来自多种生物识别信息(例如,面部和指纹)的数据的系统被称为多模式或多纤维测定系统。多致素系统可以缓解误差率和UNIBiometrics系统的一些固有弱点。因此,我们在本研究中存在一种新的用于多学生用户识别系统的分数水平融合的方案。所提出的框架在非对称聚合运营商(ASYM-AOS)上铰接。特别地,通过三角标准(T-NURMS)的发电机函数来估计ASYM-AOS。广泛的实验,使用七个公开可用的基准数据库,即国家标准和技术研究所(NIST)-Face,NIST-Multimodal,IIT Delhi Palmprint V1,IIT Delhi Ear,香港Polyu非接触式手背部图像,移动生物 - Mobio)面部,可见光移动眼睛生物识别(Visob)iPhone Day Light Omult Mover数据库据报道旨在显示所提出的计划。实验结果表明,与现有的得分水平融合方法(例如,最小,最大,T-NURMS,对称总和)相比,基于基于的基于的基于的分数融合方案不仅能够提高认证速率,而且还可以在计算上快速计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:[email protected]

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号

OSZAR »