首页> 美国卫生研究院文献>BMC Bioinformatics >Automatic plankton image classification combining multiple view features via multiple kernel learning
【2h】

Automatic plankton image classification combining multiple view features via multiple kernel learning

机译:自动浮游生物图像分类通过多个内核学习结合了多种视图功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundPlankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap.
机译:背景技术浮游植物,包括浮游植物和浮游动物,是海洋生物食物的主要来源,并构成海洋食物链的基础。作为海洋生态系统的基本组成部分,浮游生物对环境变化非常敏感,为了了解环境变化和保护海洋生态系统,浮游生物的丰度和分布研究至关重要。进行这项研究是为了开发出一种广泛适用的浮游生物分类系统,以适应越来越多的各种成像设备。文献表明,大多数浮游生物图像分类系统仅限于一种特定的成像设备和相对狭窄的分类学范围。甚至根本不存在真正的用于自动浮游生物分类的实际系统,这项研究部分地弥补了这一空白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:[email protected]

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号

OSZAR »